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Abstract— We present a method of exploiting symmetries of
discrete-time optimal control problems to reduce the dimen-
sionality of dynamic programming iterations. The results are
derived for systems with continuous state variables, and can
be applied to systems with continuous or discrete symmetry
groups. We prove that symmetries of the state update equation
and stage costs induce corresponding symmetries of the optimal
cost function and the optimal policies. Thus symmetries can
be exploited to allow dynamic programming iterations to be
performed in a reduced state space. The application of these re-
sults is illustrated using a model of spin dynamics for magnetic
resonance imaging (MRI). For this application problem, the
symmetry reduction introduced leads to a significant speedup,
reducing computation time by a factor of 75×.

I. INTRODUCTION

The dynamic programming algorithm for computing opti-
mal control policies has, since its development, been known
to suffer from the “curse of dimensionality” [1]. Its ap-
plicability in practice is typically limited to systems with
five or six continuous state variables because the number
of points required to grid a space of n continuous state
variables increases exponentially with the state dimension
n. This complexity has led to a collection of algorithms for
approximate dynamic programming, which scale to systems
with larger state dimension but lack the guarantees of global
optimality of the solution associated with the original dy-
namic programming algorithm [2]–[5].

In practice, many real-world systems exhibit symmetries
that can be exploited to reduce the complexity of system
models. Symmetry reduction has found applications in fields
ranging from differential equations [6], [7] to model check-
ing [8], [9]. In control engineering, symmetries have been
exploited to improve control of mechanical systems [10],
[11], develop more reliable state estimators [12], study the
controllability of multiagent systems [13] and to reduce
the complexity of stability and performance certification for
interconnected systems [14], [15]. Symmetry reduction has
also been applied to the computation of optimal control poli-
cies for continuous-time systems in [16], [17] and Markov
decision processes (MDPs) in [18], [19].
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In this paper we present preliminary results on symmetry
reduction for the optimal control of stochastic nonlinear sys-
tems with continuous state variables. We prove in Theorem 1
that symmetries of the state dynamics and stage costs imply
analogous symmetries of the optimal cost-to-go function and
the optimal policy. This allows for the optimal cost-to-go
function to be computed in a reduced coordinate system that
depends on fewer state variables. In contrast with work on
symmetry reduction for MDPs, our results apply to systems
with continuous state variables. It is often preferable to
identify symmetries in the continuous state space, where
symmetries can be identified based on conservation laws
or problem geometry, rather than attempting to identify
symmetries of a MDP that results from discretizing the
continuous state space. In contrast with approximate dynamic
programming methods, symmetries lead to a reduction that is
exact and does not require any approximation to the optimal
cost function or the optimal policy.

We illustrate how this reduction technique can be applied
on a problem in magnetic resonance imaging (MRI). We
have developed a discrete-time model of spin dynamics as
a tool for designing optimized flip angle sequences for MRI
fingerprinting, an emerging technology with significant clin-
ical potential [20], [21]. Our model possesses six continuous
states, with a rotational symmetry about the axis of the main
magnetic field. By exploiting symmetry we can reduce the
evaluation of the optimal cost function to a grid of only
five dimensions. This significantly reduces the computational
burden of performing the dynamic programming algorithm.

This paper is organized as follows. In Section II we
introduce notation and provide background information on
dynamic programming for optimal control. In Section III
we define a notion of symmetry for a control system and
prove that control system symmetries induce symmetries of
the optimal cost function and optimal control policy. Then
in Section IV we apply symmetry reduction to compute the
solution of an optimal control problem arising in dynamic
MRI acquisition. Code to reproduce the computational re-
sults in this paper is available at https://github.com/
maidens/ACC-2017.

II. BACKGROUND: DYNAMIC PROGRAMMING FOR
OPTIMAL CONTROL OF STOCHASTIC SYSTEMS

We consider a discrete-time dynamical system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

where xk ∈ X ⊆ Rn is the system state, uk ∈ U ⊆ Rm is the
control variable to be chosen at time k, wk ∈ W ⊆ R` are
independent continuous random variables each with density
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pk, and N ∈ Z+ is a finite control horizon. Associated with
this system is an additive cost function

gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk)

that we wish to minimize through our choice of uk. We de-
fine a control system to be a tuple S = (X ,U ,W, p, f, g,N)
where p =

∏N−1
k=0 pk is the joint density of the random

variables wk.
We consider a class of control policies π =

{µ0, . . . , µN−1} where µk : X → U maps observed states
to admissible control inputs. Given an initial state x0 and
a control policy π, we define the expected cost under this
policy as

Jπ(x0) = E

[
gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)

]
.

An optimal policy π∗ is defined as one that minimizes the
expected cost:

Jπ∗(x0) = min
π∈Π

Jπ(x0)

where Π denotes the set of all admissible control policies.
The optimal cost function, denoted J∗(x0), is defined to be
the expected cost corresponding to an optimal policy.

An optimal policy π∗ and the optimal cost function J∗ can
be computed using the dynamic programming algorithm. We
quote the following result due to Bellman from [22]:

Propostion 1 (Dynamic Programming): For every initial
state x0, the optimal cost J∗(x0) of the basic problem is
equal to J0(x0), given by the last step of the following
algorithm, which proceeds backward in time from period
N − 1 to period 0:

JN (xN ) = gN (xN )

Jk(xk) = min
uk∈U

E

[
gk(xk, uk, wk) + Jk+1

(
fk(xk, uk, wk)

)]
k = 0, 1, . . . , N − 1,

(1)

where the expectation is taken with respect to the probability
distribution of wk. Furthermore, if u∗k = µ∗k(xk) minimizes
the right hand side of (1) for each xk and k, then the policy
π∗ = {µ∗0, . . . , µ∗N−1} is optimal.

III. SYMMETRY REDUCTION

In order to combat the “curse of dimensionality,” we
describe a method to reduce the system’s dimension by
exploiting symmetries in the dynamics and stage costs. We
model symmetries based on transformations of the control
system.

Definition 1 (Transformation group): A transformation
group on X × U × W is set of tuples hα = (φα, χα, ψα)
parametrized by elements α of a group G such that the
functions φα : X → X , χα : U → U and ψα :W →W are
all C1 diffeomorphisms and they satisfy:
• φe(x) = x, χe(u) = u, ψe(w) = w when e is the

identity of the group G and

• φa∗b(x) = φa◦φb(x), χa∗b(u) = χa◦χb(u), ψa∗b(x) =
ψa ◦ ψb(x) for all a, b ∈ G where ∗ denotes the group
operation and ◦ denotes function composition.

To simplify notation we will sometimes suppress the sub-
scripts α.

Definition 2 (Invariant control system with invariant costs):
A control system S is G-invariant with G-invariant costs if
for all α ∈ G, xk ∈ X , uk ∈ U and wk ∈ W we have:

φ−1 ◦ fk(φ(xk), χ(uk), ψ(wk)) = fk(xk, uk, wk),

k = 0, 1, . . . , N − 1

gk(φ(xk), χ(uk), ψ(wk)) = gk(xk, uk, wk),

k = 0, 1, . . . , N − 1,

gN (φ(xN )) = gN (xN ), and
pk(ψ(wk))|detDψ(wk)| = pk(wk)

k = 0, 1, . . . , N − 1.
where Dψ denotes the differential of ψ. Invariances with
respect to a transformation group correspond to symmetries
of a control system. Similar definitions have appeared in
[23]–[25] for symmetries of deterministic systems.

Theorem 1 (Symmetries of the optimal cost and policy):
Let G be a group and let S be a G-invariant control system
with G-invariant costs. Then the optimal cost functions
Jk(x0) satisfy the symmetry relations

Jk = Jk ◦ φα

for any k = 0, . . . , N and any α ∈ G. Furthermore, if π∗ =
{µ∗0, . . . , µ∗N−1} is an optimal policy then so is π̃∗ := {χα ◦
µ∗0 ◦ φ−1

α , . . . , χα ◦ µ∗N−1 ◦ φ−1
α } for any α ∈ G.

This theorem readily implies the problem can be reduced,
as all states along an orbit of G are equivalent in terms
of cost, and that there are equivalence classes of optimal
policies. So it suffices to only consider the cost corresponding
to a single representative of each equivalence class, and to
find a single representative of the optimal policy within each
class.

Proof: First, note that

JN (xN ) = gN (xN ) = gN (φ(xN )) = JN (φ(xN )).

Now, suppose that for some k ∈ {0, . . . , N − 1} we have
Jk+1(xk+1) = Jk+1(φ(xk+1)) for all xk+1 ∈ X . Then for
any xk ∈ X , and uk ∈ U we have

E

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]

=

∫
W

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]
pk(wk)dwk

=

∫
W

[
gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(φ−1 ◦ fk(φ(xk), χ(uk), ψ(wk)))

]
pk(wk)dwk

=

∫
W

[
gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(fk(φ(xk), χ(uk), ψ(wk)))

]
pk(wk)dwk

=

∫
W

[
gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(fk(φ(xk), χ(uk), ψ(wk)))

]
pk(ψ(wk))|detDψ(xk)|dwk



=

∫
ψ(W)

[
gk(φ(xk), χ(uk), w̃k) + Jk+1(fk(φ(xk), χ(uk), w̃k))

]
pk(w̃k)dw̃k

=

∫
W

[
gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]
pk(wk)dwk

= E

[
gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]

Therefore,

Jk(xk) = min
uk∈U

E

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]

= min
uk∈U

E

[
gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]

= min
ũk∈χ(U)

E

[
gk(φ(xk), ũk, wk) + Jk+1(fk(φ(xk), ũk, wk))

]
= Jk(φ(xk)).

Thus J∗ = J∗ ◦ φ. Now, if π∗ = {µ∗0, . . . , µ∗N−1} is an
optimal policy and we denote x̃k = φ(xk) then for any k ∈
{0, . . . , N − 1} we have

Jk(x̃k) = Jk(xk)

= E

[
g(xk, µ

∗
k(xk), wk) + Jk+1(fk(xk, µ

∗
k(xk), wk))

]

= E

[
gk(φ(xk), χ(µ∗k(xk)), wk) + Jk+1(fk(φ(xk), χ(µ∗k(xk)), wk))

]

= E

[
gk(φ(xk), χ ◦ µ∗k ◦ φ−1(φ(xk)), wk) + Jk+1(fk(φ(xk), χ ◦ µ∗k ◦ φ−1(φ(xk)), wk))

]

= E

[
gk(x̃k, χ ◦ µ∗k ◦ φ−1(x̃k), wk) + Jk+1(fk(x̃k, χ ◦ µ∗k ◦ φ−1(x̃k), wk))

]

Thus π̃∗ := {χ◦µ∗0 ◦φ−1, . . . , χ◦µ∗N−1 ◦φ−1} is an optimal
policy.

IV. APPLICATION: MRI FINGERPRINTING

Magnetic resonance imaging (MRI) has traditionally fo-
cused on acquisition sequences that are static, in the sense
that sequences typically wait for magnetization to return to
equilibrium between acquisitions. Recently, researchers have
demonstrated promising results based on dynamic acqui-
sition sequences, in which spins are continuously excited
by a sequence of random input pulses, without allowing
the system to return to equilibrium between pulses. Model
parameters corresponding to T1 and T2 relaxation, off-
resonance and spin density are then estimated from the
sequence of acquired data. This technique, termed magnetic
resonance fingerprinting (MRF), has been shown to increase
the sensitivity, specificity and speed of magnetic resonance
studies [20], [21].

We believe that this technique could be further improved
by replacing randomized input pulse sequences with se-
quences that have been optimized for informativeness about
model parameters. To this end, we present a model of MR
spin dynamics that describes the measured data as a function
of T1 and T2 relaxation rates and the sequence of radio-
frequency (RF) input pulses, used to excite the spins.

We model the spin dynamics via the equations

xk+1 = Uk

θ2 0 0
0 θ2 0
0 0 θ1

xk +

 0
0

1− θ1

 (2)

where the states x1,k and x2,k describe the transverse mag-
netization (orthogonal to the applied magnetic field) and
x3,k describes the longitudinal magnetization (parallel to the
applied magnetic field). To simplify the presentation, off-
resonance is neglected in this model. Control inputs Uk ∈
SO(3) describe flip angles corresponding to RF excitation
pulses that rotate the state about the origin. Between ac-
quisitions, transverse magnetization decays according to the
parameter θ2 = e−∆t/T2 and the longitudinal magnetization
recovers to equilibrium (normalized such that the equilibrium
is x0 = [0 0 1]T ) according to the parameter θ1 = e−∆t/T1

where ∆t is the sampling interval.
We assume that data are acquired immediately following

the RF pulse, allowing us to make a noisy measurement of
the transverse magnetization magnitude. We also assume that
the measured data are described by a multivariate Gaussian
random variable

yk =

[
1 0 0
0 1 0

]
xk + vk

where vk is a zero-mean Gaussian noise with covariance[
γ 0
0 γ

]
. This model results from a time discretization of

the Bloch equations [26], [27] under a time scale separation
assumption that specifies that the RF excitation pulses act on
a much faster time scale than the relaxation time constants
T1 and T2. A simplified two-state version of this model was
considered in [28], where the transverse magnetization was
modelled using a single state describing the magnitude of
[x1,k, x2,k]T .

We see from the model (2) that magnetization in the trans-
verse direction decays while magnetization in the longitudi-
nal direction grows. However only the transverse component
of the magnetization can be measured. Thus there is a trade-
off between making measurements (which leads to loss of
magnetization) and magnetization recovery. This is the trade-
off that we hope to manage through the optimal design of
an input sequence Uk.

We wish to quantify the informativeness of an acquisition
sequence based on the information about the T1 relaxation
parameter θ1 that is contained in the resulting data set. More
formally, we wish to choose Uk ∈ SO(3) to maximize the
Fisher information about θ1 contained in the joint distribution
of Y = (y0, . . . ,yN ). The Fisher information I can be
expressed as a quadratic function of the sensitivities of xk
with respect to θ1:

I =

N∑
k=0

∂

∂θ1
xTk

1/γ 0 0
0 1/γ 0
0 0 0

 ∂

∂θ1
xk

where the sensitivities ∂
∂θ1

xk satisfy the following sensitivity
equations:

∂
∂θ1

xk+1 = Uk

θ2 0 0
0 θ2 0
0 0 θ1

 ∂
∂θ1

xk + Uk

0 0 0
0 0 0
0 0 1

xk +

 0
0
−1

 .
It should be noted that for system (2), the objective

function I has many local optima as a function of the input



fk(xk, Uk, wk) =


0 0 0

Uk 0 0 0
0 0 0

0 0 0
0 0 0 Uk
0 0 0




θ2 0 0 0 0 0
0 θ2 0 0 0 0
0 0 θ1 0 0 0
0 0 0 θ2 0 0
0 0 0 0 θ2 0
0 0 1 0 0 θ1

xk +


0
0

1− θ1

0
0
−1



gk(xk, Uk, wk) = −xTk



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

γ 0 0

0 0 0 0 1
γ 0

0 0 0 0 0 0

xk
(3)

sequence Uk. Thus, in contrast with [29], [30] which consider
optimal experiment design for hyperpolarized MRI problems,
for this model, local search methods provide little insight into
what acquisition sequences are good. In contrast with the
MRI model presented in [31], where global optimal exper-
iment design heuristics are developed for linear dynamical
systems, in this model the decision variables Uk multiply the
state vector xk, making the output yk a nonlinear function
of the sequence U = (U0, . . . Uk−1). Thus we must use
dynamic programming to find a solution.

A. Model

To present this problem in the formalism we have intro-
duced, we define an augmented state vector

xk =

[
xk
∂
∂θ1

xk

]
∈ R6.

We can write the dynamics of the augmented state as a
control system with f and g defined in Equation (3). This
system has a one-dimensional group of symmetries defined
by

φα(xk) =


cos(α) − sin(α) 0 0 0 0
sin(α) cos(α) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(α) − sin(α) 0
0 0 0 sin(α) cos(α) 0
0 0 0 0 0 1

xk

χα(Uk) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

Uk
 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1


ψα(wk) = wk

for any α ∈ R/2πZ.

B. Dynamic programming in reduced coordinates

From Theorem 1 we know that the optimal cost functions
Jk are symmetric with respect to the rotation φα. Thus all the
information about Jk can be obtained via its value at points
satisfying x1,k ≥ 0, x2,k = 0. Indeed for a general point

xk ∈ R6, the value of Jk(xk) is equal to Jk(x̄k) where

x̄k =


r
0
x3,kcos(−α) − sin(−α) 0

sin(−α) cos(−α) 0
0 0 1

x4,k

x5,k

x6,k




with

α = atan2(x2,k, x1,k)

r =
√
x2

1,k + x2
2,k.

This significantly reduces the number of grid points at which
Jk must be evaluated during each step of the dynamic
programming algorithm (1).

The problem’s symmetry also enables us to reduce the
computational burden associated with each evaluation of Jk.
Each evaluation requires the computation of a minimum
over the set of three-dimensional rotations U =SO(3). We
parametrize this set as

Uk(α, β, δ) = Rz(α)Ry(β)Rx(δ)

where −π ≤ α ≤ π, −π ≤ β ≤ π, and 0 ≤ δ ≤ π, and
where Rz , Ry , and Rx represent rotation matrices about the
z, y, and x axes respectively. Due to the symmetry of Jk+1

we know that the choice of α has no effect on the value of

Jk+1(fk(xk, Uk(α, β, δ), wk)).

This enables us to also reduce the size of the space of inputs.

C. Results

Computations were performed on an Amazon Web Ser-
vices EC2 m4.4xlarge instance with 16 cores and 64GB
shared memory. The code was written in the Julia lan-
guage and parallelized to allow evaluation of Jk in parallel
across grid points. The implementation is publicly available
at https://github.com/maidens/ACC-2017. The
complexity of dynamic programming based on the full model
(3) is compared against the symmetry-exploiting reduced
method described in Section IV-B. The results are given

https://github.com/maidens/ACC-2017


input grid size state grid size runtime
Full model 16× 16× 8 5× 5× 5× 7× 7× 7 12662.0 s
Reduced model 16× 8 3× 5× 7× 7× 7 170.0 s

TABLE I: Comparison of dynamic programming complexity in original coordinate system against the reduced coordinate
system that exploits symmetry.

in Table I. We see that the symmetry reduction leads to a
speedup by a factor of approximately 75× for this problem.

Optimal input and state trajectories for the full (unre-
duced) model corresponding to the initial condition at the
equilibrium x0 = [0 0 1 0 0 0]T are plotted in
Figures 1, 2, and 3. The symmetry of the model implies
that there are multiple equivalent optimal trajectories. Due to
this ambiguity, the optimum that is found by the unreduced
dynamic programming algorithm rotates unnecessarily about
the x3 axis. This shortcoming is eliminated in the reduced
algorithm.

Optimal input and state trajectories corresponding to the
reduced model described in Section IV-B are shown in
Figures 4 and 5. Comparing Figure 3 with Figure 5 we see
that the optimal trajectories computed in the full and reduced
coordinates agree relatively well, though there is some error
due to the coarse state space grid that was used.
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Fig. 1: Optimal input sequence for the full MRI model (3).

V. CONCLUSION

We have introduced a method for reducing the complexity
of dynamic programming iterations for control systems with
symmetries. We prove that control system symmetries induce
corresponding symmetries of the optimal cost function and
optimal policies. The symmetry of the optimal cost function
enables dynamic programming iterations to be performed
over a reduced space, leading to significant computational
savings. We illustrate this method using a model developed
for designing optimized flip angle sequences for MRI fin-
gerprinting. For this model, the symmetry reduction results
in an algorithm that runs 75 times faster than dynamic
programming based on a naive gridding of the state space.
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Fig. 2: Optimal state sequence for the full MRI model (3)
projected onto the x1 and x2 coordinates.
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Fig. 4: Optimal input sequence for the reduced MRI model.
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